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Prediction of Turbulent Shear Layers
in Turbomachines

P. BRADSHAW

Imperial College, London

Turbulent shear layers in turbomachines differ from turbulent bound-
ary layers on airfoils in at least seven important respects.

(1) Stronger three-dimensional effects

(2) High rates of heat transfer at comparatively low Mach numbers

(3) Larger camber

(4) Stronger accelerations and changes of direction

(5) Lower Reynolds number

(6) High free-stream turbulence

(7) Interaction of two shear layers

We have been working on several of these problems as part of an ex-
ploration of the limits of boundary-layer theory. The objects are to ex-
tend boundary-layer prediction methods to the special cases that we
call real life and to use these special cases to test hypotheses used in
simpler flows more severely than existing experimental data for the
simpler flows permit. Results of the work are presented as part of a dis-
cussion of turbomachine problems.

Most present-day prediction methods for turbulent flow, such as those
discussed at the 1968 Stanford meeting (ref. 1), refer to rather idealized
cases, although several of the methods have been extended to compressible
or three-dimensional flow to make them more directly useful to the air-
craft industry. Moderate three-dimensionality of the mean flow does not
seem to have much effect on the behavior of the turbulence, which is itself
always three-dimensional, and there is now adequate evidence that the
effects of compressibility on turbulence are small if the density fluctuation
is a small fraction of the mean density (but see ref. 1a).

In turbomachine boundary layers, three-dimensionality is more pro-
nounced and density fluctuations due to heat transfer can be much larger
than those due to high Mach number. These are obvious and important
effects; however, there are several more subtle phenomena to be found in
turbomachines and I believe that we ought to take notice of them even at
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this early stage. The list of ‘“‘special effects” given in the abstract is
obvious enc:gh—the subtlety is in the way they modify the behavior of
the turbulence.

To show that I am not wasting your time with academic trivia, table I
shows the conditions under which some of these special effects produce a
10-percent change in surface shear stress or in distance to separation.

The amount of heat transfer or three-dimensionality needed is rather
large, but the quoted values of camber, Reynolds number, and free-stream
turbulence are typical, or even conservative, figures for turbomachines.
Several of these less obvious special effects may occur simultaneously;
with good luck they may cancel—with bad luck they will not.

A few recent references have been inserted in this published version,
but the text is otherwise that presented at the symposium.

TasLE 1.—Strength of Special Effects Needed to Change Surface Shear Stress or Distance
to Separation by 10 Percent

Special effect Order of magnitude

Swecpback (with given chordwise pressure

gradient)_________________________ _____ =45 deg
Heat transfer_____________________._______ T,/T=07
Longitudinal curvature (camber)___________ 5/R=1/80 or 35 degrees turning angle

Rotation (component about spanwise axis)._| 95/U =1/80

Low Reynolds number (C; compared with
Schoenherr value) ______________________ U.8/v =650
(U wz/v 3X10°)

" Free stream turbulence (small scale)________ 3%

Free stream unsteadiness (large scale:
wb/2xU=0.1)______ .. ___._ 309, (changes mean C; by 10 percent)
3.5% (minimum C; 10 percent below

mean Cy)
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THREE-DIMENSIONAL BOUNDARY LAYERS

If we postpone discussion of flows near streamwise corners and edges
where several different Reynolds stress components contribute to the
acceleration of the fluid, we can pose the problem of three-dimensional
boundary layers as, “What is the direction of the Reynolds shear stress?”
People who use mixing-length or eddy-viscosity concepts in three-
dimensional flow implicitly assume that the answer is, “The same as the
direction of the mean shear” (components dU/dy and dW/dy, where y is
the direction normal to the surface). Figure 1 shows the directions of the
velocity, shear stress, and mean shear in a mildly three-dimensional
boundary layer with about 3.5 degrees of crossflow (ref. 2) relaxing back
to a two-dimensional state. Note that the difference between the direc-
tions of shear stress and of mean shear is comparable with the mean
crossflow angle, except near the surface where the flow is in local equilib-
rium and the mixing-length formula, with [=Ky, is expected to hold.
This mild three-dimensional flow can be predicted to within the rather
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FiGURE 1.—Measured directions of velocity vector (circled points), shear siress (squared
points), and mean shear (triangular points) in the boundary layer ona 45-degree swept
wing.
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poor experimental accuracy by an extension (ref. 3) of the boundary-layer
caleulation method we developed at the NPL (See fig. 2; the calculations
are somewhat more plausible than the experiments.)

A more strongly three-dimensional flow investigated by J. P. Johnston
(ref. 4) shows some very curious effects: the boundary layer is initially
two-dimensional, but on application of a strong pressure gradient the
shear stress vector, far from following the mean shear vector, actually
yaws in the opposite direction. It is very hard to reconcile this with any
of our current ideas about turbulence, but the hot-wire measurements of
shear stress are not infallible. All we can safely conclude is that the pre-
diction of three-dimensional effects stronger than those normally oc-
curring on a moderately swept wing must be treated with caution. For
practical purposes, many two-dimensional or three-dimensional flows
subjected to sudden pressure changes can be predicted by using the
mixing-length formula in the inner layer and Bernoulli’s equation in the
outer layer.

EFFECTS OF STREAMLINE CURVATURE ON TURBULENCE

Several experiments (refs. 5, 6, and 7; see also the paper by J. P.
Johnston in this session, and for a recent review see ref. 7a) have shown
that longitudinal surface curvature, or a component of rotation in the
direction of the mean vorticity vector, can have a large effect on turbu-
lence, quite apart from any extra terms that may appear in the mean-
motion equations. Since Professor Johnston is dealing with the case of
rotation, I will confine mysclf to curvature effects. Roughly, the analysis
for one can be applied to the other by reading ¢ for U/R. Highly cambered
airfoils, particularly turbomachine blades, can suffer appreciably from
curvature cffects. (“Suffer”’ is the word, because turbulent shear stress is
reduced on convex surfaces, leading to premature upper-surface separa-
tion, and increased on concave surfaces, leading to greater lower-surface
drag and heat transfer.)

I drew a first-order analogy between the effect of centrifugal or Coriolis
forces and the effect of buoyancy, relying on the experimental fact that
the correlation between the velocity fluctuation v and the density fluc-
tuation p’ in a heated shear flow is very strong, so that there should also
be a strong correlation between the separate effects of the fluctuating
centrifugal force 2Uu/R and the fluctuating buoyancy force —gp’. A
first-order formula for the effect of curvature, suggested in reference 8 on
the basis of the Monin-Oboukhov meteorological formula, is

U/lgieo=1—PRz (1)
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Fi1cUure 2.—Calculations for the boundary layer of figure 1 (same notation).

where the “apparent mixing length,” 1, is defined as \/(r/p)/(8U/dy)
and is not ascribed any physical significance; R1=2(U/R)/(dU/dy) is a
first approximation to an equivalent Richardson number; and 8 is a
constant, equal to about 7 on a convex surface (R7>0, stable conditions)
and about 4 on a concave surface (unstable conditions). Typically, in the
outer part of a turbulent boundary layer on a convex surface,
I/ly=1—405/R. Thus, taken at face value, the analogy suggests that
turbulence might die away altogether (‘‘relaminarization’”) at values of
3/R typical of highly cambered blades; however, this crude analogy can
scarcely be expected to work if the turbulence structure is radically
changed by strong body forces, and we need something better for turbo-
machine blades. Relaminarization has been observed by Halleen and
Johnston (ref. 6) in a rotating flow; also, Patel (ref. 4) commented that
his velocity profiles on a highly convex surface were similar to those he
found in relaminarization (ref. 10), but this effect can be explained by
the Monin-Oboukhov formula.

In a study of rapid distortion of turbulent shear flow, my doctoral
student, Mr. I. P. Castro, has made some measurements in the mixing
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layer of an impinging jet. It can be seen from figure 3 that the growth of
the shear layer is retarded by strong (stabilizing) curvature. The quantity
plotted is a rather arbitrary gecometrical width (corrected for slight three-
dimensional effects) and not a true mass flow, so that its behavior in the
region of strong distortion should not be taken too seriously. The sur-
prising thing is that the growth rate returns to normal rather quickly.
(There is a hint of an overshoot in growth rate, so that things may be more
complicated than they seem; see Discussion and ref. 10a.)
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Froure 3.—Flow in deflecled mizing layer. C, is lotal-pressure coefficient, (P-p.)/
Pop.); “Width” is distance between points where Cy, is 0.8 and 0.1.
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BOUNDARY LAYERS AT LOW REYNOLDS NUMBERS

Coles (ref. 11) has shown, by a painstaking analysis of data, that the
velocity defect law in a constant-pressure turbulent boundary layer,

usually written as
U.,—U
-1(%) @

Ur

depends on Reynolds number if U,,6/» <5000. (Roughly, U.z/»=2.5X 10¢,
a high Reynolds number by turbomachine standards.) There remains a
small probability that this “Reynolds number” effect may, in fact, be
caused by disturbances arising in the transition region but, in any event,
Coles’ correlation seems to be a universal one, valid for different transition
positions and transition devices.

Coles’ analysis relies on the constancy of K in the “mixing-length”
formula in the inner layer

aU/dy=+/(r/p)/Ky (3)
or, more specifically, on the constancy of K and A in the logarithmic
veloceity profile

U 1 uY ]

—=—11 A 4

u, K [og( v >+ “

Recently, Simpson (ref. 12) has suggested, on the basis of his measure-
ments in transpired boundary layers, that K may be a function of
Reynolds number. Simpson’s results could be explained almost equally
well in terms of Coles’ suggested defect-law behavior; however, incon-
trovertible evidence of Reynolds number effects on the inner layer velocity
profile in pipe and duct flow has been presented by Patel and Head (ref.
10) and merits some discussion.

The changes in the logarithmic law found by Patel and Head can be
correlated in terms of an inner-layer parameter, the dimensionless shear
stress gradient, ar+/dy* = (v/pw,*) 3/3y, which has been used by several
workers to correlate relaminarization effects in accelerated flows. Even at
the lowest Reynolds numbers at which turbulent flow is possible, the
values of 87+/0y* found in a constant-pressure boundary layer are very
much smaller than those associated with inner-layer changes in pipe flow.
Therefore, Patel and Head’s measurements actually contradict Simpson’s
suggestion and imply that the inner layer in a low-Reynolds-number
boundary layer follows the usual logarithmic law if the pressure gradient
is small. It follows that the defect-law changes observed by Coles are
probably real and necessarily caused by viscous effects in the outer region
of the boundary layer. In order to predict low-Reynolds-number boundary
layers we need more data on these viscous effects, although both Herring .
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and Mellor (ref. 13) and I (unpublished) have inserted an empirical
Reynolds number dependence into the specification of shear stress in the
outer layer. (The change in total shear stress is many times larger than the
viscous shear stress in the outer layer.)

The photographs of a smoke-filled boundary layer at low Reynolds
number published by Fiedler and Head (ref. 14) suggest that the inter-
face between the turbulent and nonturbulent fluid has more large-scale
irregularities than at high Reynolds number. There is no evidence for
instability of the viscous superlayer but, since the defect law in a pipe or
duct seems to be independent of Reynolds number everywhere outside
the viscous sublayer, it seems that the Reynolds-number dependence of
the defect Jaw in a boundary layer must be associated with the presence
of a free boundary.

In the analysis of Patel and Head’s measurements mentioned above
(carried out by Dr. G. D. Huffman of Allison while in our department,
ref. 16a) it was found that the detailed profiles could be well represented
by the mixing-length formula (eq. (3)) with the van Driest mixing-len< .h
specification

1=Ky[1— exp (—\V/7/p y/vA+)] (5)

with A* a function of d7%/dy™*, chosen to optimize the fit. This seems to be
a satisfying demonstration of the wide applicability of inner-layer simi-
larity ideas and strongly supports the view that viscous effects in the inner
layer depend only on the local turbulence Reynolds number, \/7/p y/».
There is just one difficulty: the values of A+ in the pipe and in the duct are
different for a given value of 87t/dy*. It can be seen from figure 4 that the
values of A* that give the best fit to Patel and Head’s duct measurements
agree fairly well with the empirical relations suggested by several authors
for other plane flows. The pipe measurements stand apart. The only
possible conclusion is that transverse curvature affects the viscous sub-
layer even when the sublayer thickness (to y+=30) is less than 10 percent
of the radius. The sense of the difference between pipe and duct indicates
that concave transverse curvature (as in the streamwise corner between a
blade and a hub) tends to suppress the Reynolds stress in the sublayer.
One hopes that the effect of transverse curvature is confined to the
viscous sublayer. If curvature also affects the inner layer (30y/u, <y <0.2R,
for instance) then the coincidence of the logarithmic laws in pipc and duct
(at high Reynolds numbers) takes a great deal of explaining. However,
it is very difficult to see why transverse curvature should affect the viscous
sublayer and not the fully turbulent flow. The small amount of data on
the axial flow over a cylinder (convex curvature) shows that the effect on
A™ s of sign opposite to that in a pipe, as one would expect; the effect may,
however, be smaller. Again, the inner layer seems unaffected by curvature
as such.
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FIGURE 4.—Variation of best-fit value of Van Driest parameter At (eq. (5)) with dimen-
sionless shear-stress gradient. Data of Patel and Head (ref. 10) for pipe (circled points)
and duct (triangular points).

FREE-STREAM “TURBULENCE”

The word “turbulence” appears in quotation marks because the un-
steady free stream in a turbomachine consists partly of true turbulence
and partly of nonrandom fluctuations caused by the relative motion of
the blades and their wakes. The boundary layer bencath any unsteady
stream with typical wavelengths large compared to the boundary layer
thickness can be treated by simple extensions of calculation methods for
steady flows. If one ignores streamwise “history” effects on the turbulent
shear stress in steady flow one can evidently ignore timewise history
effects of similar magnitude in unsteady flow. However, it is more satis-
fying to analyze the effects of unsteadiness by extending a steady-flow
method that takes streamwise history into account. As an example, the
calculation method we developed at NPL uses an empirical equation for
the rate of change of turbulent shear stress along a streamline, expected to
be valid if that rate of change is not too large compared to the rates of
production or dissipation of turbulent energy. Exactly the same equation
can be used in unsteady flow (ref. 15) simply by noting that the rate of
change of shear stress along a streamline now contains dr/dt as well as
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spatial derivatives. The equation is again expected to be valid if the total
(temporal and spatial) rate of change of shear stress along a streamline
is not too large compared to the rate of production or dissipation of
turbulent energy. The equations for steady and unsteady flow are identical
if we use the notation D/Dt for rate of change along a streamline. Of
course, the numerical calculations are more difficult in unsteady flow, but
no new physics is required. The same simple extension could be made for
any other method using a differential equation for shear stress. Figure 5
shows some calculations by the NPL method for the simple case of an
unsteady flow over an infinite plate (independent variables y, ¢ only).
This graph is included to show that time-dependent flows can behave
rather unexpectedly. Both flows have the same value of U/t as seen by
an observer moving with the free stream but the pressure rise to separation
is very different. Dr. V. C. Patel of the Lockheed-Georgia Company
has programmed our method for two-dimensional unsteady flow (in-
dependent variables z, y, ¢: see ref. 15a).

If the wavelength of the free-stream fluctuations is of the same order
as the wavelength of the boundary-layer turbulence, rates of change of
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F1Gure 5.—Comparison of calculations for time-dependent and space-dependent boundary
layers with the same free stream acceleration. Solid curve: time-dependent, U =TU,.; exp
(—0.25 U, st /1). Dashed curve: space-dependent, U=U,s (I — 0.25 z/1).
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shear stress along a streamline may be large; the above-mentioned ecal-
culation method then fails, like all others, and we have to consider the
effects of the free-stream fluctuations on the turbulence structure. At
present, we have no quantitative ideas about what happens. Qualita-
tively, we can see that free-stream fluctuations will further distort the
irregular “superlayer” boundary hetween the houndary-layer turbulence
and the external stream, leading to increased entrainment, so that there
may be some similarity between the effects of small-scale free-stream
turbulence and viscous effects in the outer layer at low Reynolds numbers.
(Coles’ paper shows that the two produce similar changes in the mean
velocity profile.) We need more data. For recent work see refs. 16a to
16e, D-18 and D-19.

INTERACTING SHEAR LAYERS

A problem which is harder to solve than that of free-stream turbulence,
but perhaps easier to study, is that of interaction between two turbulent
shear layers. Examples include the flow near the centerline of a wake or
jet or in the entrance region of a duct; the effect of a wing or blade wake
on a slotted flap or a following blade, respectively; the wall jet; and the
boundary layer in a streamwise corner. The last-named is a three-dimen-
sional problem and, on a fundamental level, much harder than the others,
although it may be easier to cope with empirically than the blade-wake
problem because fewer parameters are involved.

As an example, let us look at the simplest problem, the flow near the
centerline of a “two-dimensional” duct. As the growing boundary layers
on the two walls approach the centerline, occasional tongues of turbulent
fluid from one boundary layer, bearing (say) a positive shear stress, will
cross the centerline and enter the negative velocity gradient of the other
boundary layer. The turbulent fluctuations in the tongue will be atten-
uated because the rate of production of turbulent energy (shear stress
times velocity gradient) in the tongue will be negative. As the boundary
layers continue to grow, the number and intensity of these “frontier
violations” will increase, significantly altering the turbulence in the outer
part of each boundary layer. Not only will the turbulent intensities and
shear stress be changed, but typical eddy length scales and structural
coefficients like the energy diffusion coefficient, ¢/ (¢%)*2, may also
change. The effects of the interaction on the turbulence seem to penetrate
as close to the surface as 0.2 of the half-width of the duct and, of course,
the interaction eventually stops streamwise change altogether. In an
asymmetrical flow (such as a curved duct or a duct with one rough and
one smooth wall (ref. 17)), there is a region in which the net shear stress
and velocity gradient have different signs and so the net rate of production
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of turbulent energy will be negative. This phenomenon has attracted some
attention, but it is merely an overt sign of what goes on in secret in a
symmetrical interaction.

The main question to be answered is, “Does the interaction seriously
change the turbulence structure?”’—meaning the dimensionless properties
like the diffusion coefficient mentioned above, rather than dimensional
quantities like the intensity. If each of the boundary layers that meet to
form a duct flow continued to behave like a boundary layer (with an
effective thickness somewhat larger than the half-width of the duct) then
we could calculate the flow development by using ordinary boundary-layer
methods on each, predicting the two shear stress profiles separately (but
combining them in the mean motion equation). We cannot possibly hope
that matters are as simple as this, but (refs. 17a and 17b) the effects of the
interaction on the turbulence structure are small enough for multiple
shear layers to be treated as separate layers, slightly modified by their
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neighbors, rather than as one impossibly complicated mess. A simple
piece of evidence for this is shown in figure 6. Here we have plotted the
total-pressure deficit on the centerline of a duct, compared with twice the
total-pressure deficit that would oceur at the same distance from the
surface in a boundary layer growing unimpeded (ie., we are adding
together the total-pressure deficits in the two boundary layers, pretending
that they do not interact at all). Of course, the two curves in figure 6
diverge eventually because the boundary layers do not continue to grow
unimpeded, but at least we can see that nothing very spectacular happens
to the shear-stress-producing part of the turbulence when the boundary
layers meet. A similar behavior was found by Knystautas (ref. 18) in
interfering jets. My doctoral student, Mr. R. B. Dean, whose results are
shown in figure 6, is now looking at the details of the turbulence in the
interaction region of the duct (ref. 19).
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DISCUSSION

J. H. HORLOCK (Cambridge University) : As usual, Mr. Bradshaw
has provided a stimulating contribution in his excursion into turbo-
machinery fluid mechanics. At Cambridge, we are fortunate to have close
collaboration with his group at Imperial College, so we have been given
early warning on several of the points he raises and have had early
opportunity to use his latest ideas.

Mr. Bradshaw’s special points about boundary layers in turbomachines
are not equally important for the thin boundary layers growing on
successive profiles and the thicker annulus wall layers growing con-
tinuously through the (axial) machine. It appears, mainly from calcula-
tions, that three-dimensional effects on profile boundary layers are small
(see ref. D-1), but they are obviously large in annulus wall layers, and
this is where the main emphasis of our work at Cambridge lies. Camber
effects on turbulence structure are large on profile layers but small on
wall layers (§/R is small). Strong accelerations apply equally to both, but
rapid changes of direction are more important near the annulus walls,
Low-Reynolds-number effects apply to the profiles but not the walls and
high free-stream “turbulence” to both types of layer. I should like to
comment on several of these effects in more detail.

(1) I think that the interaction of the “inviscid” secondary flows
(which are controlled largely by entry shear and blade geometry) with
the viscous regions are probably more important than the “isotropy” of
eddy viscosity or mixing length. Perkins (ref. D-2), studying the three-
dimensional boundary layer just outside a corner boundary layer, finds
the isotropic eddy viscosity concept quite reasonable, but I am bound to
say that in our three-dimensional integral methods of calculating the
annulus boundary layers where we use the Prandtl-Mager model for the
crossflow (thereby avoiding the use of mixing length or eddy viscosity)
it is the crossflow that is poorly predicted (Horlock and Hoadley, ref.
D-3).

(2) The camber effects are undoubtedly important, but in direct
measurements of shear stress in three-dimensional boundary layers
developing over cylindrical hubs of diffusers Hughes (ref. D—4) finds no
evidence as yet that shows g is as large as 7. Hughes has also devised an
experiment in which we can compare directly shear stresses with and
without Coriolis effects.
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(3) Rapid accelerations worry us a great deal in our boundary-layer
calculations. Applying the integral method of reference D-3 to the flow
through a set of inlet guide vanes of large camber, we find that the stream-
wise boundary layer (assumed to be described by a Coles profile) is
subject to such an enormous acceleration that the value of = becomes
negative. This is not an unknown phenomenon in conventional aero-
dynamics, but if # < —1, then the method loses validity. Surprisingly, the
negative = profiles compare reasonably well with experiment, with a
“hump”’ in the velocity profile. At present, Marsh and Daneshyar at
Cambridge University are planning an experiment in which we can
provide rapid acceleration, but not through turning the flow—simply by
measuring the wall boundary-layer flow through thick uncambered
blades. We are thus attempting to separate the acceleration from the
three-dimensional effects due to turning.

(4) The Ry effects are intriguing and undoubtedly relevant to profile
boundary layers. However, I think the main problem relating to these
layers is the question of transition, especially in an unsteady environment
or one with high free-stream turbulence. At Cambridge, Evans has shown
that when the latter is increased, Thwaite’s prediction of the laminar
separation point becomes pessimistic.

(5) In our group, Daneshyar and Mugglestone have also programmed
the unstecady Bradshaw method and we look forward to comparing
results with Patel. We have also developed an unsteady version of the
integral method described in reference D-5 for comparison with the more
accurate Bradshaw method. This is a general point of some importance.
Our philosophy is that it is unlikely that the Bradshaw type of calculation
will be used dircctly in turbomachine work because it requires even
further complications in these real situations (effect of body forces,
unsteadiness, three-dimensionality, etc). We feel that simple integral
methods may still have uses if they compare reasonably with Bradshaw’s
method in some trial situations.

(6) The interaction of the shear layers is a new one which I have not
thought of before, but obviously of importance in turbomachines, particu-
larly in the effect of a blade wake on a following row. Our only con-
tribution here is the work of Perkins referred to above. Here, the lesson
appears to be that if the Reynolds stress distributions can be described
with fair accuracy (by correlation of experimental data) the overall
parameters such as displacement and momentum ‘“‘areas” may be pre-
dicted and the nature of the secondary flows explained.

I should like to congratulate Mr. Bradshaw on his stimulating paper and
look forward to further contributions from him in this area. Perhaps I
might emphasize once again that boundary-layer phenomena in turbo-
machines are also closely related to ‘“inviscid” phenomena such as
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secondary and tip clearance flows, but it is very useful to have a new
“viscous” recruit to the internal flow area.

H. McDONALD (United Aircraft Research Laboratories): In addition
to the seven points of difference between conventional airfoil boundary
layers and those encountered on the blades of turbomachinery listed by
Mr. Bradshaw, 1 would like to add two additional points, one on transition
and one on separation, and comment upon the low Reynolds number
remarks made by Mr. Bradshaw as point (5).

First, experimental evidence obtained by the Pratt & Whitney Division
of United Aircraft (ref. D-6) shows clearly that at the low Reynolds
numbers typical of turbine blade operation the effect of the high free-
stream acceleration on the suction side is to inhibit the transition to
fully turbulent flow, in spite of the very high levels of free-stream tur-
bulence induced by the upstream combustion process. In figure D-1, a
typical result from reference D-6 is reproduced, illustrating the foregoing
remark, and it can be clearly seen that over most of the chord the bound-
ary layer is transitional. It is apparent from figure D—1 that some means of
predicting the behavior of transitional boundary layers must be evolved
before the heat transfer to the suction side of a turbine can be predicted
to an acceptable level of engineering accuracy.

400 —~|ANALYTICAL PREDICTION

O[EXPERIMENTAL DATA
TURBULENT BOUNDARY
LAYER ASSUMPTION _\

//\%_c

o
o o
100

LAMINAR BOU nuv—/\\_

N
LAYER 'ASSUMP'IIION

w
(=]
(=]

~N
[=]
[+

HEAT TRANSFER COEFFICIENT
~BTU/HR-FT-°F

RE
E OR ANALYTICALL
EDICTED HEAT,
ANSFER COEFFICIENTS] bo~Ry0!

0.4 [AXIALCHORD REYNOLDS NO. _300 x 103

TURBULENCE INTENSITY (%) 221 Ficure D-1.—Ezperimental heat-

transfer coefficient and pressure

0 20 40 60 80 100 distribution for o typical turbine

LEADING EDGE TRAILING EDGE vane. (United Aircraft Research
AXIAL CHORD~% Laboratories)

STATIC-TO-TOTAL
PRESSURE RATIO
(=]
[-J

0.2




268 TWO- AND THREE-DIMENSIONAL VISCID FLOWS

Second, as a result of the low Reynolds numbers commonly encountered
in turbomachinery, boundary-layer separation occurs very readily. Con-
ventional separation near the trailing edge usually occurs without re-
attachment of the boundary to the airfoil surface and often such a
separation generates large increases in the loss level. Near the leading
edge, separation is usually followed by subscquent reattachment, forming
a separation bubble, probably with comparatively little change in the
overall loss level. Sometimes, in a poorly designed, highly loaded airfoil,
separation can occur near the gauge point. Separation bubbles can, of
course, give rise to unexpected Reynolds number effects and, in addition,
usually play havoc with boundary-layer prediction methods. Since, with
an arbitrary, prescribed pressure distribution, the boundary-layer equa-
tions of motion are, in fact, singular at a point of zero wall stress, the more
accurately a prediction procedure treats the boundary-layer cquations
the more likely it is to fail at a separation point. The only rigorous course
of action appears to be to use the full Navier-Stokes equations in the region
of the bubble. Recently, a study has been completed at United Aircraft
Research Laboratories utilizing a finite difference procedure for com-
puting the Navier-Stokes equations in the region of the bubble (ref. D-7).
These calculations have shown a considerable upstream influence of the
separation process. Future work in this area will involve incorporation of
a turbulence model into the procedure.

Concerning the direct effect of Reynolds number, the structure of the
low Reynolds turbulent boundary layer has been evaluated recently at
United Aircraft Research Laboratories from the equations of mean motion
(ref. D-8) using Coles’ velocity profile (ref. 11). It was found that the
disappearance of the wake component as the Reynolds number is reduced,
observed by Coles, is consistent with a large increasc in normalized cddy
viscosity or mixing length, (At Ry=>500 the normalized mixing length was
double what it was at Ry=>5000.) Use of a normalized eddy viscosity or
mixing length which does not vary with Reynolds number causes the skin
friction to be underpredicted by about 10 percent. The variation of eddy
viscosity derived from Coles’ profile was in fair agreement with the
suggestion of Herring and Mellor (ref. 13).

Finally, although the blade profile boundary layers seem amenable to
treatment by modest developments of conventional boundary methods,
the annulus boundary layer secems particularly troublesome. In addition
to being strongly three-dimensional, as Mr. Bradshaw points out, the
annulus boundary seems capable of interacting strongly with the “free”
stream and distorting the inviscid flow by an appreciable amount. As is
well known, this coupling between the annulus boundary layer and the
inviscid flow results in both displacement thickness effects and secondary
flows, and it would be mandatory to take these effects into account in any
stage loss calculation procedure based on boundary-layer theory.
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G. L. MELLOR (Princeton University) : Professor Bradshaw’s paper
is an interesting one and I find myself in general agreement with the
conclusions expressed there, I will, therefore, attempt to add a corrobora-
tive point or two.

(1) Mr. Ronald So of our laboratory has just completed some inter-
esting measurements on wall curvature illustrating the dramatic effect of,
for instance, 6*/R~>.01; going from a flat surface to a convex surface, the
Reynolds stress in the outer 60 to 70 percent of the layer is virtually
“turned off”’. First indications are that this effect appears to be quantita-
tively deducible from a Prandtl-Rotta type boundary-layer model.

(2) Mr. Luc Bissonnette of our laboratory has also completed
measurements of an axisymmetric boundary layer on a rotating cylinder.
We find that the simple eddy viscosities differ by about 30 percent in the
axial and circumferential directions.

(8) Characterization of the inner viscous layer is functionally equiva-
lent using either Van Driest’s formula (eq. (5)) or the one we used,

Ve x4

v x+(6.9)*
where »,=—u"v'/(93/dy) and x=u(y/v)\/7/p. When Van Driest’s
function is mapped onto ours or vice versa, the detailed distributions do
differ in what one would think to be an unimportant way. However, in
the case of wall suction or blowing it appears that A* in Van Driest’s
equation must be adjusted as a function of blowing rate, whereas out
formula does not seem to require adjustment. This must currently be con-
sidered fortuitous; however, I mention it since the same situation might
prevail with regard to the effect of a+/dyt.

Speaking in general terms, it is my feeling that the most important
turbulent boundary layers in a turbomachine are the annulus wall layers,
which probably defy description even in terms of the seven attributes
listed in the author’s abstract.

J. M. ROBERTSON (University of Illinois): This review, and espe-
cially the quantification embodied in table I, indicates serious additional
problems imposed on boundary-layer type flow analyses when turbo-
machinery applications are involved. For several years we have had a
number of these under study, as motivated by machinery interests,
together with the unlisted one of the turbulent near wake of blades. The
present remarks pertain to items (3), (5), and (6) of table I of the authors’
listing.

The discussion of streamline curvature effects suggests an increased
likelihood of separation on convex surfaces due to a reduction in turbulent
shear stress. A study of the boundary layer on the upper surface of a
simulated turbomachinery blade by Dr. R. C. Hansen (ref. D-9) indi-
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cated turbulent separation much ahead of the locale predicted by analysis.
It has been supposed that the breakdown in analysis may be due to a
variation in pressure across the layer under appreciable streamline
curvature, as such variation is not ordinarily included in boundary-layer
analyses. Other studies in our laboratory (refs. D-10 and D-11) of flows
approaching turbulent separation have evidenced such a breakdown in the
basic boundary-layer premise of constant pressure across the layer. An
experiment, in which the turbulent layer developed along a flat plate is
sent along the outer surface of a circular cylinder, has been set up to study
this occurrence under more controlled conditions. Although only pre-
liminary measurements are available, it is found that already at the point
of tangency a pressure change of 0.050U2/2 occurs across the layer.

A low-Reynolds-number defect in frictional formulation is suggested in
table I. To this writer, this appears to be a matter of what C; formulation
is employed; a local friction factor formulation drawn from the Schoenherr
average C, relation does not seem too appropriate. The 1953 relation of
D. Ross (ref. D-12)

C;= (4.443.8 log Rs) 2

where Ry=0U/» has been well verified for flat-plate boundary-layer flows
and agrees with Cole’s tabulation within a few percent. For adverse-
pressure-gradient flows, the Ludwicg and Tillman formulation in terms of
Ry and H(H =6*/6, ratio of displacement to momentum thicknesses) is
almost universally accepted; however, several years ago our calculations
suggested that this yielded poor valucs at low Reynolds numbers. The
predictions were checked in the flat-plate case where H is well established
(refs. D-12 and 1D-13) as a unique function of Rs. The Ludwieg and Till-
man formulation was found to be 19-percent low at Ry=300, about the
smallest turbulent-layer Reynolds number to be expected. In the spirit of
the Ludwieg and Tillman formulation, the following expression was
developed to circumvent the error.

_exp [1.8(Ho—H) ]
" (4.4+3.8log Ry) 2

!

where

0.40
Ho= 1094 G5 Tog Ka—1.0
is the flat-plate turbulent-layer shape factor (ref. D-14) formulation
based on a large number of observations (refs. D-12 and D-13).

For some time, we have been studying the effect of free-stream tur-
bulence on the turbulent boundary layer. This has the effect of increasing
the lateral momentum transfer, thus making the velocity profile more
uniform over most of the layer; the shape factor H is thus reduced in
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magnitude, while G'(G =45/, ratio of layer disturbance thickness (locale of
0.99U) to momentum thickness) and C; are increased by the turbulence.
In an attempt to quantify these occurrences beyond the rather scattered
data available in the literature, we have been studying the turbulent layer
on a flat plate downstream of various turbulence-producing grids (up to
10-percent turbulence intensity). Comparison of the changes in the
boundary-layer parameters versus those expected in nominally low-level
turbulence indicates appreciable changes at intensities up to about
5 percent and then some leveling off. The author’s estimate of a 3-percent
turbulence level producing a 10-percent increase in C; is rather well
verified; at this level, the shape factor H is reduced by some 4 percent.

A.S. MUJUMDAR (Carrier Corporation): I just wish to point out a
few recent papers that would complement the excellent review made by
Professor Bradshaw.

Chin, Hulschos, and Hunnicutt (ref. D-15) have reported on their
experimental investigation of the effect of latcral curvature on the char-
acteristics of turbulent boundary layers, while Willmarth and Chi (ref.
D-16) more recently considered the effect of transverse curvature on wall
pressure fluctuations and the turbulence microstructure. From the
spectral and cross-correlation measurements of reference D-16, it appears
that the turbulence structure of the boundary layer, primarily that of
the viscous sublayer, is affected by the transverse curvature. An inter- .
esting analytical study of the effect of longitudinal (streamwise) surface
curvature on the turbulent boundary layer has been reported recently by
Dr. Neal Tetervin (ref. D-17). Although his equations do not give
accurate quantitative results, they show that if the concave curvature
increases the shear sufficiently, separation is delayed despite the boundary
layer thickening. The converse is also true; i.e., convex curvature hastens
separation cven though the boundary layer is thinned. An important
indication from his calculations, which is of special interest to turbo-
machine designers, is that when the curvature increases in the streamwise
direction, separation is hastened on a surface of concave curvature and is
delayed on a surface of convex curvature.

Regarding the effect of free-stream turbulence on turbulent boundary
layers, there has been some work in this area since the pioneering work of
Kline et al. Kestin and his co-workers at Brown University (ref. D-18)
and Junkhan and Serovy (ref. D-19) at the Iowa State University have
made some valuable contributions in this area.

BRADSHAW (author): I am grateful to the discussors for their
comments. In particular, Professor Horlock’s second paragraph clarifies
the relative importance of the different effects I mentioned, and all of the
discussors mention additional effects.
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The paragraph numbers below refer to the numbered list in the Abstract.

(1) The effects of anisotropy of eddy viscosity in three-dimensional
flow may well be negligible in flows dominated by pressure gradients or
viscous inviscid interactions (see the last sentence of the section on three-
dimensional boundary layers) ; however, if the Reynolds stresses outside
the local-cquilibrium inner layer are important, anisotropy of eddy
viscosity is likely to be important also (see figure 2).

(3) Further work on curved flow by my student, Mr. Ian Castro,
agrees with So’s work mentioned by Professor Mellor. Figure D-2 (also
see figure 3) shows the response of u? in a suddenly deflected shear layer.
The maximum §/R is about 0.025, about the same as Professor Robertson’s
and roughly one-third of So’s. It is notable that the decrease in u? (taken
as the maximum value at a given station and measured in the direction of
the local mean velocity) lags behind the increase in curvature. If the
subsequent increase of u? above its initial value is genuine (and it does not
seem to be caused by large-scale unsteadiness of the shear layer), one 18
led to suspect that the recovery of the turbulence from its partly damped
state rescmbles laminar-turbulent transition, in which intense well-
organized disturbances appear. I hope the experiments mentioned by the
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Fieure D-2.—Deflected shear layer (Castro); see figure 3 of paper.
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discussors will help us to represent curvature effects more accurately in
shear-layer calculation methods, but I wish to point out that the partly-
stabilized state (/R of order .01) is more important for blade and airfoil
calculation than the ‘“turned off’” state, and the latter may not throw
much light on the former. Incidentally, I gather that Professor Horlock’s
student, Mr. Hughes, has now found =6 to 7 in a flow with an effective
8/R of about 0.007.

(5) I agree with Professor Robertson that one can find abetter C; law
than Schoenherr for low Re; the point is that Schoenherr is based on the
log law and the defect law, and so a failure of Schoenherr implies a failure
of the log law or the defect law, which merits investigation in its own
right.

As mentioned in the paper, I am fairly confident that, at least in
moderate pressure gradients, it is only the outer layer (defect law) that
alters, owing to viscous effects.

Dr. J. E. Green of R.A.E., Bedford, has also deduced mixing length
and eddy viscosity in the outer layer from Coles’ low Re profiles; his
results agree with Mr. McDonald’s in showing large changes.

Figure D-3 shows the final results of Dr. David Huffman’s data
analysis for strong negative shear stress gradients (or pressure gradients) ;
transverse curvature affects the sublayer behavior for a given dr+/ay+.
This result is qualitatively independent of the sublayer model used, so
replacement of Van Driest’s formula by Professor Mellor’s formula would
not collapse the curves, though it would be interesting to see if the duct
(flat surface) results were better represented by the latter formula than
by Van Driest’s formula with constant A+,

Of course I agree that, as Professor Horlock and Mr. McDonald say,
transition is an important low-Reynolds-number effect; I said nothing
about it in the paper because I had nothing to say. The effect of tur-
bulence changes at low Re on fC’ s dx, integrated from the leading edge to
where Res=5000, is about the same as a change in transition Res from
400 to 300—not negligible compared to the actual uncertainty of transi-
tion position.

(6) Professor Robertson’s measurements of the effects of free-stream
turbulence are very welcome (not only because they confirm my rough
estimate). I hope he or others will look at the effects on the turbulence
structure of the shear layer itself. In this connection, the latest measure-
ments in a duct entry region by my student, Mr. Bruce Dean, show that
the “non-interaction” (superposition) hypothesis works quite well for
w?, as well as for total pressure P (figure D—4). The difference between
this curve for “non-interaction” C, and that shown in figure 6 results
from a change in cur method of extrapolating the boundary-layer growth
from data upstream of the interaction region; this is surprisingly critical.
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I don’t think “non-interaction” can be trusted too far (in its simplest
form it would imply no effect of free-stream turbulence) but it is a useful
concept when dealing with minor interactions.
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The comments about annulus boundary layers made by the discussors
emphasize the need to treat viscous/inviscid and viscous/viscous inter-
actions. I hope that people who work on these important problems will
not ignore all the knowledge we have gained on thin shear layers; a lot of
it will still be usable, provided we have the patience to treat the inter-
action as an interaction (solution by matching) and do not try to find a
complete field solution in one go.

I would change the emphasis of Mr. McDonald’s remarks about
singularities at separation and say that the less accurately a prediction
method treats the physics of the flow the less suitable it will be in cal-
culations of viscous/inviscid interactions. Undoubtedly, one will have to
admit elliptic behavior of the pressure and also normal Reynolds stress
gradients, but I would not expect any large changes in the turbulence
unless the rate of strain changed appreciably from a simple shear.

Finally, I would like to comment on (5) of Professor Horlock’s re-
marks. He rightly points out that real life leads to extra complications in
calculation methods and implies that methods like ours, which are already
quite complicated, may become intractable, so that integral methods may
be preferable. I don’t want to argue about the merits of our method in
particular, but I think Professor Horlock’s ““general point” may not be
quite as general as he implies.

Let us distinguish between two sorts of turbulence model:

(1) “No history”’—local equilibrium between turbulence and mean
flow, leading to algebraic equation for shear stress

(2) ““History”—differential equation for shear stress and two sorts of
solution procedure:

(3) “Integral” method—otherwise, Method of Integral Relations

(4) “Differential” method—finite differences in all independent
variables

(3) does not necessarily go with (1) or (4) with (2). At least three people
have produced “integral” versions of our calculation method and our
“diffcrential” program has built-in options to simulate the input and
output of an integral method working on Res, H and C;. The fastest of the
integral versions runs at only five times the speed of the differential
program and suffers noticeably from using too crude a velocity profile
family. Therefore, I do not think we should reject (4) in favor of (3);
computing times for given accuracy will not be an order of magnitude
less. Programming time matters only to the originator, not the user.
There are some cases where “history’” effects are unimportant. In such
cases, our method reduces to the mixing-length formula, for which
Patankar and Spalding have a program which runs about twice as fast as
ours; again, this is not a significant saving unless a vast amount of com-
puting is to be done because the cost of a run is less than a dollar.
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Even in three-dimensional (swept wing) flow, the computing time for
our method would be only about 2X (number of spanwise stations) X
(two-dimensional computing time); roughly the same factor of increase
would apply to any other method. The only case which is really daunting
is the two-dimensional time-dependent calculation. Unless one uses a
method that is implicit in time, solutions for a typical flow whose period
of oscillation is many times greater than a typical turbulence time scale
are exceedingly lengthy, as Professor Horlock’s colleagues have found.
With an integral method, one can take larger time steps.

Turning from arithmetical complication to physical complication, the
turbulence models used in “history”’ methods are—or can be—nearer to
real life than those used in no-history methods. Therefore, they are easter
to extend to complicated cases. For instance, extension of our model to
time-dependent flow is immediate (see the section of the paper on free-
stream “turbulence’) ; extension to three-dimensional flow requires only
a plausible hypothesis based on the obscrvation that turbulence is always
three-dimensional ; and our present knowledge of the effect of body forces
can be included very simply. Therefore, I think that Professor Horloek’s
view may be slightly colored by his experience with the particularly
unpleasant case of unsteady flow, and, while he undoubtedly has a point,
it would be a pity if his remarks discouraged turbomachine engineers from
trying more complicated turbulence models—they are all much less
complicated than turbulence itself.
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